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Gravitational scattering

Complementary approaches include:

Numerical relativity: low-separation, short durations, ≈ equal mass.

Post-Minkowskian expansion (expansion in G): weak-field,
arbitrary mass-ratio, analytical.

Gravitational self-force (expansion in mass-ratio ϵ): strong- and
weak-field, small mass-ratio, primarily numerical.

What can we do with self-force?

Determine/validate PM coefficients: already put into practice for
scalar field [Barack et al 2023]; GSF will give exact PM results in
future! [Damour 2020],

Benchmark/resum other approaches in the strong-field e.g. [Long,

Whittall & Barack 2024]

Improve waveform models: e.g. incorporate SF into EOB via
χ→ H mapping [Damour 2016]
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Self-force expansion

Metric of the physical spacetime is expanded about background as a series
in ϵ := µ/M ≪ 1,

gphys
αβ = gαβ + ϵh

(1)
αβ + ϵ2h

(2)
αβ + ...

0SF: Background metric gαβ. Smaller object moves along fixed
background geodesic.

1SF: Perturbation h
(1)
αβ sourced by point particle on fixed background

geodesic. Leading order conservative and dissipative self-forces ∝ ϵ.

2SF: Perturbation h
(2)
αβ sourced by particle on 1SF-perturbed

trajectory. Gives rise to additional self-force terms ∝ ϵ2.

Particle description derived, not assumed.
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1SF equation of motion

Metric perturbation may be split into regular and singular fields,
[Detweiler & Whiting 2003]

hαβ = hRαβ + hSαβ,

defined in terms of certain acausal Green’s functions.

Only hRαβ contributes to the self-force. For example, at 1SF order,

Duα

dτ
= q∇αβγh

R(1)
βγ

∣∣∣
z(τ)

+ O(q2),

where

∇αβγhγβ := −1

2

(
gαβ + uαuβ

)
uγuδ (2∇δhβγ −∇βhγδ) .
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Scalar-field toy model

Scalar charge q with mass µ scattered off a
Schwarzschild black hole of mass M. Scalar field:

∇Φ = −4πq

∫
δ4(xα − xαp (τ))√

−g
dτ,

where ϵ := q2/µM ≪ 1 is the expansion
parameter.

At leading order take xαp (τ) to be a scatter
geodesic: parameterised by e.g. velocity at
infinity v and impact parameter b

Particle feels a self-force due to interaction with
its own scalar field:

uβ∇β (µu
α) = q∇βΦ

R := Fα
self .
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Conservative and dissipative forces

Self-force split into conservative and dissipative forces:

Fα
cons =

1

2

[
Fα
self(Φ

ret) + Fα
self(Φ

adv)
]
,

Fα
diss =

1

2

[
Fα
self(Φ

ret)− Fα
self(Φ

adv)
]
,

Symmetries of Kerr geodesics relate advanced and retarded forces:
[Mino 2003, Hinderer & Flanagan 2008]

F self(adv)
α (τ) = ϵαF

self(ret)
α (−τ),

where ϵα = (−1, 1, 1,−1) and periapsis is at τ = 0.

Thus extract conservative/dissipative forces from retarded calculation
alone.

C. Whittall (Birmingham) Numerical approaches to SF scattering SF + Amplitudes 2025 7 / 26



Numerical self-force calculations: mode-sum regularisation

Decompose the field into spherical harmonics centred on the Schwarzschild
black hole:

Φ(t, r , θ, ϕ) =
1

r

∞∑
ℓ=0

+ℓ∑
m=−ℓ

ψℓm(t, r)Yℓm(θ, ϕ)

Self-force can be computed using mode-sum regularisation: [Barack & Ori 2000-03]

Fα(τ) =
∞∑
ℓ=0

∇α

[
1

r

+ℓ∑
m=−ℓ

ψℓmYℓm

]
x±
p (τ)

∓
(
ℓ+

1

2

)
Aα(τ)− Bα(τ)︸ ︷︷ ︸
regularisation parameters


Time-domain

Solve (1 + 1)d PDEs for
ψℓm(t, r).

Scattering: [Long & Barack 2209.03740]

Frequency-domain

Construct ψℓm(t, r) from
frequency-modes, obtained by
solving ODEs.

Scattering: [Whittall & Barack 2305.09724]
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Time-domain code [Barack & Long 2209.03740]

Field equation solved using finite differences on a characteristic grid

∂2ψℓm

∂u∂v
+

1

4
Vℓ(r)ψℓm = S̄ℓmδ

(
r − rp(t)

)

[Figures from arXiv:2209.03740]

Distributional source implemented
as a jump in non-vacuum cells:

ψ00 = Z − ψ11 + (ψ01 + ψ10)

(
1 −

h2

8
Vℓ(rc )

)
+ O(h3)

Z :=

∫
C
S̄ℓmδ

(
r − rp(t)

)
dudv

Characteristic initial conditions
ψℓm(u0, v) = 0 = ψℓm(u, v0) →
junk radiation.
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Frequency-domain decomposition

Additionally decompose

ψℓm(t, r) =

∫ +∞

−∞
ψℓmω(r)e

−iωtdω.

Frequency-modes ψℓmω obey ODE

d2ψℓmω

dr2∗
−
[
Vℓ(r)− ω2

]
ψℓmω = Sℓmω(r)

Retarded solution expressed in terms of homogeneous solution basis
ψ±
ℓω(r) using variation of parameters:

ψℓmω(r) = ψ+
ℓω(r)

∫ r

rmin

ψ−
ℓω(r

′)Sℓmω(r
′)

Wℓωf (r ′)
dr ′ + ψ−

ℓω(r)

∫ +∞

r

ψ+
ℓω(r

′)Sℓmω(r
′)

Wℓωf (r ′)
dr ′
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Direct reconstruction

Direct reconstruction ψℓm(t, r) ≈
∫ +ωmax

−ωmax

ψℓmω(r)e
−iωtdω not practical due

to Gibbs phenomenon.
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EHS reconstruction [Barack, Ori & Sago 2008]

EHS reconstruction: recover ψℓm(t, r) separately in r ≤ rp(t) and
r ≥ rp(t) using homogeneous solutions.

For example, field modes in the “internal” region r ≤ rp(t)
reconstructed from

ψ̃−
ℓmω(r) := ψ−

ℓω(r)

∫ +∞

rmin

ψ+
ℓω(r

′)Sℓmω(r
′)

Wℓωf (r ′)
dr ′.

Restores exponential, uniform convergence.

External reconstruction: EHS cannot be applied in r > rp(t) for
scatter orbits.

Cancellation problem: significant loss of precision at high
eccentricities [van de Meent 2016]. Limited to rp ∼ rmin for scatter orbits.

C. Whittall (Birmingham) Numerical approaches to SF scattering SF + Amplitudes 2025 12 / 26



Frequency-domain code [Whittall & Barack 2305.09724]

FD code makes use of internal EHS reconstruction and one-sided
mode-sum regularisation.

Calculation of “normalisation integral”

C−
ℓmω :=

∫ +∞

rmin

ψ+
ℓω(r

′)Sℓmω(r
′)

Wℓωf (r ′)
dr ′.

is numerically challenging:
▶ Significant error from truncating at finite rmax → IBP.
▶ Integrand highly oscillatory, extremely slow! → specialist quadrature.

Adaptive mode-sum truncation: routine to detect anomalous ℓ-mode
behaviour caused by cancellation, set appropriate ℓmax.
▶ Accuracy deteriorates rapidly.
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Comparing the codes

FD code more precise than TD code
near to periapsis along strong-field
orbits.

FD code can access ℓ > 15 modes near
to periapsis.

[Figure from arXiv:2406.08363]
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Cancellation problem necessitates rapid drop in ℓmax as rp increases
→ TD code superior.

Application of FD code to weak-field orbits bv2 ≫ M less
well-studied.

TD/FD hybridisation sometimes useful [Long, Whittall & Barack 2406.08363].
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Extension to gravity: TD code

[Long & Barack 2105.05630] considered metric reconstruction for point
mass moving along a scatter geodesic in Schwarzschild.

Time-domain evolution for Hertz potentials ϕ± obeying s = ∓2
Teukolsky polluted by divergent unphysical modes:

Remove using transformation to new variable ϕ→ X obeying
Regge-Wheeler (RW) equation (Schwarzschild only)

SF calculation needs five numerical derivatives of X :

Solve RW for X
∂2

−→ Hertz potential ϕ
∂2

−→ hαβ
∂−→ Fµ.
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Hyperboloidal slicing

Change to compactified hyperboloidal coordinates (t, r) 7→ (τ, σ):

t = τ +
1

σ
− 2 log[σ(1− σ)]; r∗ = rp∗ (t) +

1

σ
− 2 + 2 log[(1− σ)/σ]

Fixed positions:

I+ : σ = 0 H+ : σ = 1 rp : σ =
1

2

Compactification under-resolves
wave-zone. Expected to eliminate
unphysical incoming radiation.

Two approaches (in time-domain)
under development:
▶ Spectral collocation scheme [Macedo,

Long, Barack]
▶ Finite differences [Vaswani & Barack]

[Image credit: O. Long]
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Extension to gravity: FD code

Techniques for scalar-field scattering in principle extend to
gravitational calculations
▶ Teukolsky solver + metric reconstruction
▶ Solve for Lorenz gauge metric perturbation [Ackay, Warburton & Barack 2013]

No external EHS: standard radiation gauge approach uses two-sided
mode-sum regularisation. [Pound, Merlin & Barack 2014]

▶ Lorenz gauge reconstruction? [Wardell, Kavanagh & Dolan 2024, ...]

Cancellation problem: loss of precision at large radii will restrict
accuracy of applications e.g. scatter angle.

Deficiencies of EHS complicate extension to gravity, limits potential
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Developments in the frequency-domain

“Nature adores a vacuum”: use the form of the EHS on either side of
the orbit as an ansatz, determine coefficients using junction
conditions at the worldline [Dolan+ (under development)]
▶ Reported to work well for low-eccentricity bound orbits.
▶ Interest in scatter applications.
▶ Form of r > rp(t) ansatz unclear (learning opportunity?)
▶ Cancellation problem still occurs.

→ Only useful if it proves much more accurate than evaluating radial
integrals.

Gibbs complementary reconstruction: reproject partial Fourier
representation onto a “complementary” basis of polynomials.
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Gibbs-complementary reprojection

Say that a basis of functions {Ck} (on a compact time interval I ) is
complementary to the Fourier basis if: [Gottlieb & Shu 1998]

1 for any function f which is analytic on I , the expansion in the {Ck}
basis converges exponentially to f , and

2 the projection of the high-frequency Fourier content onto the
low-degree Ck can be made exponentially small.

Gegenbauer polynomials
{
Cλ
k (s)

}
orthogonal on [−1, 1] wrt weighted

inner product,∫ +1

−1
(1− s2)λ−1/2Cλ

n (s)C
λ
m(s)ds = hλnδnm.

▶ Generalisation of Legendre (λ = 1/2) and Chebyshev (λ = 0, 1)
polynomials.

▶ Complementary to the Fourier basis.
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Gegenbauer reconstruction [Gottlieb & Shu 1992 (et al), 1994, 1995, 1997]

Suppose ψℓm(t, r) is analytic (at fixed r) on interval a ≤ t ≤ b:
1 Compute the partial Fourier integrals using the inhomogeneous modes
ψℓmω(r) for t ∈ [a, b]:

Ψℓm(t, r ;ωmax) :=

∫ +ωmax

−ωmax

ψℓmω(r)e
−iωtdω.

2 Project onto the Gegenbauer basis:

gλ
k (r ;ωmax) :=

1

hλk

∫ 1

−1

(1− s2)λ−1/2Ψℓm (t(s), r ;ωmax)C
λ
k (s)ds.

where t(s) = [(b − a)s + (a+ b)] /2.

3 Approximate

ψℓm(t, r) ≈
N∑

k=0

gλ
k C

λ
k (s(t)).

Gegenbauer approximant converges uniformly and exponentially on
a ≤ t ≤ b, provided N, λ and ωmax → ∞ in linear proportion.
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Internal reconstruction: r ≤ rp(t) [Whittall, Barack & Long in prep]

Gegenbauer reconstruction effective and outperforms Direct reconstruction.
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External reconstruction: r ≥ rp(t) [Whittall, Barack & Long in prep]

Gegenbauer reconstruction enables calculations in r > rp(t).
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Gegenbauer reconstruction: discussion

Circumvents Gibbs phenomenon and EHS challenges (cancellation,
external reconstruction).

Choice of N, λ impacts accuracy of approximant.
▶ Robust parameter selection is key challenge for implementation.

Computational cost: more integrals!
▶ Gegenbauer reconstruction will be more expensive than EHS approach,

but probably still feasible.

Proof of concept scalar field calculations coming soon to arXiv.

Next steps: EHS/Gegenbauer hybrid which switches from EHS to
Gegenbauer at large radius.

Other approaches exist! Large body of under-exploited literature on
the Gibbs phenomenon.

C. Whittall (Birmingham) Numerical approaches to SF scattering SF + Amplitudes 2025 23 / 26



Gravitational self-force fluxes

Can compute gravitational fluxes in Schwarzschild from
Regge-Wheeler-Zerilli equation, given by:

d2Rℓmω

dr2∗
−
(
V

RW/Z
ℓ (r)− ω2

)
Rℓmω = S

RW/Z
ℓmω (r)

in the frequency domain.

Energy fluxes (for example) given by

∆E±
ℓm =

1

64

(ℓ+ 2)!

(ℓ− 2)!

∫ +∞

−∞
ω2|C±

ℓmω|
2dω,

where

C±
ℓmω =

∫ +∞

rmin

R±
ℓω(r

′)S
RW/Z
ℓmω (r ′)

Wℓωf (r ′)
dr ′.
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Gravitational fluxes: scattering

Previously computed for point mass scattering by [Hopper & Cardoso

2018, Hopper 2018].

Recently repeated using same methodology by [Warburton (in prep)]
(see next talk for results).

Flux calculation can be seen as starting point for SF calculation:
C−
ℓmω is the internal EHS normalization integral.

▶ Flux calculation makes use of asymptotic fields: no EHS.

▶ Self-force calculation needs field in vicinity of worldline: uses EHS.
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Conclusions

Status

Mature time- and frequency-domain codes for scalar-field self-force

Extension to gravity not straightforward for either.
▶ Unphysical Teukolsky modes (TD code)
▶ Deficiencies of EHS (FD code)

Various new techniques under development to resolve these issues.

Outlook

Expect improved scalar-field scatter calculations soon.

Gravitational flux calculations underway.
▶ Might form basis for future (EHS-based) self-force calculation.

→ Liable to the same problems facing the EHS scalar-field code.
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