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Gravitational scattering

Why study scattering?

Clean, well-defined asymptotic in/out states.

Probe strong-field (sub-ISCO) at low energy.

EOB Hamiltonian HEOB completely determined by scatter angle
χ(E , L). [Damour 2016+]

B2B maps between scatter and bound orbit. [Kalin & Porto 2020+]

Complementary approaches:

Post-Minkowskian expansion (expansion in G): weak-field,
arbitrary mass-ratio, analytical.

Gravitational self-force (expansion in ϵ): strong-field, small
mass-ratio, numerical.

GSF can be used to calibrate/benchmark PM in the strong-field

Whittall, Long and Barack arXiv:2406.08363 BritGrav 25 2 / 16



Gravitational self-force

Metric of the physical spacetime is expanded about background as a series
in ϵ := µ/M ≪ 1,

gphys
αβ = gαβ + ϵh

(1)
αβ + ϵ2h

(2)
αβ + ...

0SF: Background metric gαβ. Smaller object moves along fixed
background geodesic.

1SF: Perturbation h
(1)
αβ sourced by point particle on fixed background

geodesic. Leading order self-force ∝ ϵ:

Duα

dτ
= − ϵ

2
gαβ

(
2h

(1)R
βρ;σ − h

(1)R
ρσ;β

)
uρuσ + O(ϵ2) := Fα/µ, (1)
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Scalar-field self-force and scattering

Geodesic scatter orbits parameterised by velocity at
infinity v and impact parameter b > bc(v).

Using scalar-field toy model in Schwarzschild

∇Φ = −4πq

∫
δ4(xα − xαp (τ))√

−g
dτ,

uβ∇βu
α = q(gαβ + uαuβ)∇βΦ

R := ϵFα,

where ϵ := q2/µM ≪ 1 is the expansion parameter.

Self-force can be split into conservative
(time-symmetric) and dissipative (antisymmetric)
pieces: Fα = Fα

cons + Fα
diss.
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SF scatter angle correction

Scatter angle defined

χ := φout − φin − π.

Self-force expansion:

χ(v , b) = χ0SF(v , b) + ϵχ1SF(v , b) + O(ϵ2),

N.B.: split between geodesic term χ0SF and self-force correction χ1SF

defined at fixed (v , b).

1SF correction expressed as integral of SF along background geodesic
[Barack & Long 22]

χ1SF =

∫ +∞

−∞
[GE (τ)Ft(τ)− GL(τ)Fφ(τ)] dτ
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PM expansion of χ1SF

Analytical progress using post-Minkowskian expansion,

χ1SF =
∞∑
k=2

χ1SF
k (v)

(
GM

b

)k

.

Coefficients known
through 4PM order for
scalar-field. [Gralla & Lobo 22,

Barack & Long 22, Barack et al 23, Bini et

al 24]

Good agreement found
with numerical self-force
in weak-field b → ∞.
[Barack et al 23]
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Transition to plunge

Separatrix b = bc(v) divides
scatter (b > bc(v)) from plunge
(b < bc(v)).

Each critical “geodesic”
b = bc(v) has two branches:
▶ Inbound: begins at infinity, is

captured into circular orbit.
▶ Outbound: begins as circular

orbit, escapes to infinity.

Conservative/dissipative forces
obtained from combinations of
SF along inbound/outbound
branches.

δb := b − bc(v)

Figure: scatter geodesics in the b → bc (v) limit.
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Singularity structure of χ0SF and χ1SF

Log divergence in χ0SF:

χ0SF ∼ A0(v) log

(
δb

bc(v)

)
as b → bc(v),

where, recall, δb := b − bc(v), and

A0(v) = −
(
1− 12M2(1− v 2)

v 2bc(v)2

)1/2

.

Faster divergence at 1SF,

χ1SF ∼ A1(v)
bc(v)

δb
,

as b → bc(v). [Barack & Long 2022]
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Integral expression for A1(v) along critical orbit

Divergence parameters A
cons/diss
1 (v) can be expressed

Acons
1 (v) = − 1

bc(v)

∫ +∞

−∞

(
cEF

cons
t + cLF

cons
φ

)
dτ,

Adiss
1 (v) =

1

bc(v)

∫ +∞

−∞

(
cEF

diss
t + cLF

diss
φ

)
dτ,

where the integrals and self-forces are evaluated on the outbound critical
orbit and cE/L are constants.

Calculation confirms 1/δb divergence analytically.

For each v , Acons
1 (v) and Adiss

1 (v) obtained in principle by SF
calculation along only 2 orbits.
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SF-informed PM resummation

Introduce

∆χ(v , b) := A0

[
log

(
1− bc(v)(1− ϵA1/A0)

b

)
+

4∑
k=1

1

k

(
bc(v)(1− ϵA1/A0)

b

)k
]
.

▶ ∆χ = O(b−5) as b → ∞
▶ Matches the b → bc(v) divergences of χ(v , b) at both 0SF and 1SF.

Resummed scatter angle:

χ̃(v , b) := χ4PM(v , b) + ∆χ(v , b).

▶ Matches b → ∞ behaviour of χ through 4PM order.
▶ Matches b → bc(v) behaviour at 0SF and 1SF.

Similar to geodesic order approach introduced in [Damour & Rettegno

2023], but extended to 1SF.
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Numerical platforms

Two codes available for scalar-field self-force scatter calculations:

Time-domain code: [Barack & Long 2209.03740+]

▶ Finite differences, null grid.
▶ Performed first calculations of χ1SF.
▶ Typically limited to ℓmax = 15.

Frequency-domain code: [Whittall & Barack 2305.09724]

▶ SF reconstructed from frequency modes.
▶ Highly accurate near periapsis, access to at least ℓmax = 25.
▶ Loss of precision for large-ℓ modes at larger radii; ℓmax must be

reduced rapidly.

FD code more accurate than TD near periapsis, less accurate further away.

Both codes restricted to non-critical orbits - must extrapolate from δb > 0!

Whittall, Long and Barack arXiv:2406.08363 BritGrav 25 11 / 16



High-velocity limit

Large-ℓ modes become more
important at high velocities.

Delayed transition to asymptotic
behaviour in mode-sum.
▶ Possibly associated with

relativistic beaming.

ℓ > 15 modes can contribute up
to a few percent of the total SF.

2 5 10 20

10-6

0.001

1

Figure: regularised ℓ-mode contributions to ∇tΦ
R at given

points along example low and high velocity orbits.

Effect largest near periapsis, where FD code can handle ℓmax > 15.

Motivated development of TD/FD hybrid approach.
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Calculating A1(v) by extrapolation

Calculate A1(v) by extrapolating
along sequence of ∼ 10 orbits
with b → bc(v) at fixed v .

More accurate to fit for
A
cons/diss
1 (v) separately.

Fits performed in Mathematica,
weighting each scatter angle by
1/ϵ2num.

Effect of varying number of
points included in fit:
investigated and incorporated

into error bars on A
cons/diss
1 .

Figure: fit models A1(v)bc (v)/δb for v = 0.5.
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Resummation: 1SF scatter angle correction [OL, CW & LB 2406.08363]
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Figure: the resummation procedure significantly improves agreement with the

numerical SF data, even in the weak-field. (v = 0.5)
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Resummation: total scatter angle [OL, CW & LB 2406.08363]
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Figure: χ0SF + 0.1χ1SF for v = 0.5. Our 1SF resummation improves upon the

geodesic order resummation in the δb → 0 limit.
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Summary and outlook

Resummed PM provides semi-analytical model which is fast to evaluate
and accurate in both strong and weak-field at 1SF.

Next steps:

Direct calculation of A1(v) as integral over critical orbit should
increase accuracy and decrease computational burden.
▶ Interesting distributional frequency spectrum for critical orbit.

Framework easily extends to gravity once GSF available.
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