Black hole scattering near the transition to plunge: Self-force and resummation of post-Minkowskian theory

Chris Whittall with Oliver Long & Leor Barack

BritGrav 25 University of Birmingham

GRAVITATIONAL WAVE ASTRONOMY

Gravitational scattering

Why study scattering?

- Clean, well-defined asymptotic in/out states.
- Probe strong-field (sub-ISCO) at low energy.
- EOB Hamiltonian $H_{\rm EOB}$ completely determined by scatter angle $\chi(E,L)$. [Damour 2016+]
- B2B maps between scatter and bound orbit. [Kalin & Porto 2020+]

Complementary approaches:

- **Post-Minkowskian expansion (expansion in** *G*): weak-field, arbitrary mass-ratio, analytical.
- Gravitational self-force (expansion in ε): strong-field, small mass-ratio, numerical.

GSF can be used to calibrate/benchmark PM in the strong-field

Gravitational self-force

Metric of the physical spacetime is expanded about background as a series in $\epsilon:=\mu/M\ll$ 1,

$$g_{\alpha\beta}^{\mathrm{phys}} = g_{\alpha\beta} + \epsilon h_{\alpha\beta}^{(1)} + \epsilon^2 h_{\alpha\beta}^{(2)} + \dots$$

- **0SF**: Background metric g_{αβ}. Smaller object moves along fixed background geodesic.
- **1SF**: Perturbation h⁽¹⁾_{αβ} sourced by point particle on fixed background geodesic. Leading order self-force ∝ ε:

$$\frac{Du^{\alpha}}{d\tau} = -\frac{\epsilon}{2} g^{\alpha\beta} \left(2h^{(1)\mathrm{R}}_{\beta\rho;\sigma} - h^{(1)\mathrm{R}}_{\rho\sigma;\beta} \right) u^{\rho} u^{\sigma} + O(\epsilon^2) := F^{\alpha}/\mu, \quad (1)$$

Scalar-field self-force and scattering

- Geodesic scatter orbits parameterised by velocity at infinity v and impact parameter b > b_c(v).
- Using scalar-field toy model in Schwarzschild

$$abla \Phi = -4\pi q \int rac{\delta^4 (x^lpha - x^lpha_p(au))}{\sqrt{-g}} d au,
onumber u^eta
abla_eta u^lpha = q(g^{lphaeta} + u^lpha u^eta)
abla_eta \Phi^R := \epsilon F^lpha,
onumber$$

where $\epsilon := q^2/\mu M \ll 1$ is the expansion parameter.

• Self-force can be split into conservative (time-symmetric) and dissipative (antisymmetric) pieces: $F^{\alpha} = F^{\alpha}_{cons} + F^{\alpha}_{diss}$.

SF scatter angle correction

• Scatter angle defined

$$\chi := \varphi_{\rm out} - \varphi_{\rm in} - \pi.$$

• Self-force expansion:

$$\chi(\mathbf{v}, \mathbf{b}) = \chi^{0\mathrm{SF}}(\mathbf{v}, \mathbf{b}) + \epsilon \chi^{1\mathrm{SF}}(\mathbf{v}, \mathbf{b}) + O(\epsilon^2),$$

N.B.: split between geodesic term $\chi^{0\rm SF}$ and self-force correction $\chi^{1\rm SF}$ defined at fixed (v, b).

 1SF correction expressed as integral of SF along background geodesic [Barack & Long 22]

$$\chi^{1\text{SF}} = \int_{-\infty}^{+\infty} \left[\mathcal{G}_{\mathsf{E}}(\tau) \mathcal{F}_{t}(\tau) - \mathcal{G}_{\mathsf{L}}(\tau) \mathcal{F}_{\varphi}(\tau) \right] d\tau$$

Whittall, Long and Barack

5/16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PM expansion of $\chi^{1\mathrm{SF}}$

• Analytical progress using post-Minkowskian expansion,

$$\chi^{1\text{SF}} = \sum_{k=2}^{\infty} \chi_k^{1\text{SF}}(v) \left(\frac{GM}{b}\right)^k.$$

Whittall, Long and Barack

Transition to plunge

- Separatrix b = b_c(v) divides scatter (b > b_c(v)) from plunge (b < b_c(v)).
- Each critical "geodesic"
 b = b_c(v) has two branches:
 - Inbound: begins at infinity, is captured into circular orbit.
 - Outbound: begins as circular orbit, escapes to infinity.
- Conservative/dissipative forces obtained from combinations of SF along inbound/outbound branches.

$$\delta b := b - b_c(v)$$

Figure: scatter geodesics in the $b \rightarrow b_c(v)$ limit.

Whittall, Long and Barack

arXiv:2406.08363

イロト 不得 トイヨト イヨト

Singularity structure of $\chi^{\rm 0SF}$ and $\chi^{\rm 1SF}$

• Log divergence in χ^{0SF} :

$$\chi^{0SF} \sim {\cal A}_0(v) \log \left(rac{\delta b}{b_c(v)}
ight) \, \, {
m as} \, \, b o b_c(v),$$

where, recall, $\delta b := b - b_c(v)$, and

$$A_0(v) = -\left(1 - rac{12M^2(1-v^2)}{v^2b_c(v)^2}
ight)^{1/2}$$

• Faster divergence at 1SF,

$$\chi^{1SF} \sim A_1(v) \frac{b_c(v)}{\delta b},$$

as $b \rightarrow b_c(v)$. [Barack & Long 2022]

Integral expression for $A_1(v)$ along critical orbit

Divergence parameters $A_1^{\text{cons/diss}}(v)$ can be expressed

$$\begin{aligned} A_1^{\text{cons}}(v) &= -\frac{1}{b_c(v)} \int_{-\infty}^{+\infty} \left(c_E F_t^{\text{cons}} + c_L F_{\varphi}^{\text{cons}} \right) d\tau, \\ A_1^{\text{diss}}(v) &= \frac{1}{b_c(v)} \int_{-\infty}^{+\infty} \left(c_E F_t^{\text{diss}} + c_L F_{\varphi}^{\text{diss}} \right) d\tau, \end{aligned}$$

where the integrals and self-forces are evaluated on the *outbound* critical orbit and $c_{E/L}$ are constants.

- Calculation confirms $1/\delta b$ divergence analytically.
- For each v, $A_1^{\text{cons}}(v)$ and $A_1^{\text{diss}}(v)$ obtained in principle by SF calculation along only 2 orbits.

SF-informed PM resummation

Introduce

$$\Delta\chi(v,b) := A_0 \left[\log\left(1 - rac{b_c(v)(1-\epsilon A_1/A_0)}{b}
ight) + \sum_{k=1}^4 rac{1}{k} \left(rac{b_c(v)(1-\epsilon A_1/A_0)}{b}
ight)^k
ight]$$

• Resummed scatter angle:

$$\tilde{\chi}(\mathbf{v}, \mathbf{b}) := \chi_{4\mathrm{PM}}(\mathbf{v}, \mathbf{b}) + \Delta \chi(\mathbf{v}, \mathbf{b}).$$

- Matches $b \to \infty$ behaviour of χ through 4PM order.
- Matches $b \rightarrow b_c(v)$ behaviour at 0SF and 1SF.
- Similar to geodesic order approach introduced in [Damour & Rettegno 2023], but extended to 1SF.

Whittall, Long and Barack

arXiv:2406.08363

10/16

Numerical platforms

Two codes available for scalar-field self-force scatter calculations:

- Time-domain code: [Barack & Long 2209.03740+]
 - Finite differences, null grid.
 - Performed first calculations of χ^{1SF} .
 - Typically limited to $\ell_{\rm max} = 15$.
- Frequency-domain code: [Whittall & Barack 2305.09724]
 - SF reconstructed from frequency modes.
 - Highly accurate near periapsis, access to at least $\ell_{max} = 25$.
 - Loss of precision for large-*l* modes at larger radii; *l*_{max} must be reduced rapidly.

FD code more accurate than TD near periapsis, less accurate further away. Both codes restricted to non-critical orbits - must extrapolate from $\delta b > 0!$

High-velocity limit

- Large-*l* modes become more important at high velocities.
- Delayed transition to asymptotic behaviour in mode-sum.
 - Possibly associated with relativistic beaming.
- ℓ > 15 modes can contribute up to a few percent of the total SF.

Figure: regularised ℓ -mode contributions to $\nabla_t \Phi^R$ at given points along example low and high velocity orbits.

- Effect largest near periapsis, where FD code can handle $\ell_{\rm max} > 15$.
- Motivated development of TD/FD hybrid approach.

Calculating $A_1(v)$ by extrapolation

- Calculate A₁(v) by extrapolating along sequence of ~ 10 orbits with b → b_c(v) at fixed v.
- More accurate to fit for $A_1^{\text{cons/diss}}(v)$ separately.
- Fits performed in Mathematica, weighting each scatter angle by $1/\epsilon_{\rm num}^2$.
- Effect of varying number of points included in fit: investigated and incorporated into error bars on A₁^{cons/diss}.

Resummation: 1SF scatter angle correction [OL, CW & LB 2406.08363]

Figure: the resummation procedure significantly improves agreement with the numerical SF data, even in the weak-field. (v = 0.5)

Whittall, Long and Barack

arXiv:2406.08363

BritGrav 25

Resummation: total scatter angle [OL, CW & LB 2406.08363]

Figure: $\chi^{\rm OSF} + 0.1\chi^{\rm ISF}$ for v = 0.5. Our 1SF resummation improves upon the geodesic order resummation in the $\delta b \rightarrow 0$ limit.

arXiv:2406.08363

BritGrav 25 15 / 16

Resummed PM provides semi-analytical model which is fast to evaluate and accurate in both strong and weak-field at 1SF.

Next steps:

- Direct calculation of $A_1(v)$ as integral over critical orbit should increase accuracy and decrease computational burden.
 - Interesting distributional frequency spectrum for critical orbit.
- Framework easily extends to gravity once GSF available.