Frequency-domain self-force calculations using Gegenbauer reconstruction

Chris Whittall University of Birmingham

28th Capra Meeting University of Southampton 23rd July 2025

GRAVITATIONAL WAVE ASTRONOMY

Gravitational scattering

Why study scattering?

- Clean, well-defined asymptotic in/out states.
- Probe strong-field (sub-ISCO) at low energy.
- ullet EOB Hamiltonian $H_{
 m EOB}$ completely determined by scatter angle $\chi(E,L)$. [Damour 2016+]
- B2B maps between scatter and bound orbit. [Kalin & Porto 2020+]

Complementary approaches include:

- \bullet Numerical relativity: low-separation, short durations, \approx equal mass.
- Post-Minkowskian expansion (expansion in *G*): weak-field, arbitrary mass-ratio, analytical.
- Gravitational self-force (expansion in mass-ratio ϵ): strong- and weak-field, small mass-ratio, numerical.

Interest in developing numerical GSF calculations along scatter orbits.

Scalar-field self-force and scattering

• Scalar charge q with mass μ scattered off a Schwarzschild black hole of mass M. Scalar field:

$$\nabla \Phi = -4\pi q \int \frac{\delta^4(x^\alpha - x_p^\alpha(\tau))}{\sqrt{-g}} d\tau,$$

where $\epsilon := q^2/\mu M \ll 1$ is the expansion parameter.

- At leading order take $x_p^{\alpha}(\tau)$ to be a scatter geodesic: parameterised by energy at infinity, E_{∞} , and periapsis radius r_{\min} .
- Particle feels a self-force due to interaction with its own scalar field:

$$u^{\beta}\nabla_{\beta}(\mu u^{\alpha})=q\nabla_{\beta}\Phi^{R}:=F^{\alpha}.$$

Numerical self-force calculations

Decompose the field into spherical harmonics centred on the Schwarzschild black hole:

$$\Phi(t,r,\theta,\phi) = \frac{1}{r} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} \psi_{\ell m}(t,r) Y_{\ell m}(\theta,\phi)$$

Self-force can be computed using mode-sum regularisation:

$$F_{\alpha}(\tau) = \sum_{\ell=0}^{\infty} \left\{ \nabla_{\alpha} \left[\frac{1}{r} \sum_{m=-\ell}^{+\ell} \psi_{\ell m} Y_{\ell m} \right]_{x_p^{\pm}(\tau)} \mp \left(\ell + \frac{1}{2}\right) \underbrace{A_{\alpha}(\tau) - B_{\alpha}(\tau)}_{\text{regularisation parameters}} \right\}$$

Time-domain

- Solve (1+1)d PDEs for $\psi_{\ell m}(t,r)$.
- Scattering: [Long & Barack 2209.03740]

Frequency-domain

- Construct $\psi_{\ell m}(t,r)$ from frequency-modes, obtained by solving ODEs.
- Scattering: [Whittall & Barack 2305.09724]

Direct reconstruction

• Frequency-modes $\psi_{\ell m \omega}$ obey ODE

$$rac{d^2\psi_{\ell m\omega}}{dr_*^2} - \left[V_\ell(r) - \omega^2\right]\psi_{\ell m\omega} = S_{\ell m\omega}(r)$$

• Retarded solution expressed in terms of homogeneous solution basis $\psi_{\ell\omega}^{\pm}(r)$ using variation of parameters:

$$\psi_{\ell m \omega}(r) = \psi_{\ell \omega}^{+}(r) \int_{r_{\min}}^{r} \frac{\psi_{\ell \omega}^{-}(r') S_{\ell m \omega}(r')}{W_{\ell \omega} f(r')} dr' + \psi_{\ell \omega}^{-}(r) \int_{r}^{+\infty} \frac{\psi_{\ell \omega}^{+}(r') S_{\ell m \omega}(r')}{W_{\ell \omega} f(r')} dr'$$

Direct reconstruction:

$$\psi_{\ell m}(t,r) pprox \Psi_{\ell m}(t,r;\omega_{
m max}) := \int_{-\omega_{
m max}}^{+\omega_{
m max}} \psi_{\ell m \omega}(r) e^{-i\omega t} d\omega$$

is **not practical** due to the Gibbs phenomenon.

Direct reconstruction

EHS reconstruction [Barack, Ori & Sago 2008]

- EHS reconstruction: recover $\psi_{\ell m}(t,r)$ separately in $r \leq r_p(t)$ and $r \geq r_p(t)$ using homogeneous solutions.
- For example, field modes in the "internal" region $r \leq r_p(t)$ reconstructed from

$$\tilde{\psi}_{\ell m \omega}^{-}(r) := \psi_{\ell \omega}^{-}(r) \int_{r_{\min}}^{+\infty} \frac{\psi_{\ell \omega}^{+}(r') S_{\ell m \omega}(r')}{W_{\ell \omega} f(r')} dr'.$$

- Restores exponential, uniform convergence.
- External reconstruction: EHS cannot be applied in $r > r_p(t)$ for scatter orbits.
- Cancellation problem: significant loss of precision at high eccentricities [van de Meent 2016]. Limited to $r_p \sim r_{\min}$ for scatter orbits.

Gibbs-complementary reprojection

- Say that a basis of functions $\{C_k\}$ (on a compact time interval I) form a Gibbs-complement to the Fourier basis if: [Gottlieb & Shu 1998]
 - ① for any function f which is analytic on I, the expansion in the $\{C_k\}$ basis converges exponentially to f, and
 - 2 the projection of the high-frequency Fourier content onto the low-degree C_k can be made exponentially small.
- Gegenbauer polynomials $\{C_k^{\lambda}(s)\}$ orthogonal on [-1,1] wrt weighted inner product,

$$\int_{-1}^{+1} (1-s^2)^{\lambda-1/2} C_n^{\lambda}(s) C_m^{\lambda}(s) ds = h_n^{\lambda} \delta_{nm}.$$

- ▶ Generalisation of Legendre ($\lambda=1/2$) and Chebyshev ($\lambda=0,1$) polynomials.
- ► Gibbs-complementary to the Fourier basis.

Gegenbauer reconstruction [Gottlieb & Shu 1992 (et al), 1994, 1995, 1997]

Suppose $\psi_{\ell m}(t,r)$ is analytic (at fixed r) on interval $a \leq t \leq b$:

① Compute the partial Fourier integrals using the inhomogeneous modes $\psi_{\ell m\omega}(r)$ for $t\in [a,b]$:

$$\Psi_{\ell \mathit{m}}(t,r;\omega_{\mathrm{max}}) := \int_{-\omega_{\mathrm{max}}}^{+\omega_{\mathrm{max}}} \psi_{\ell \mathit{m}\omega}(r) e^{-i\omega t} d\omega.$$

Project onto the Gegenbauer basis:

$$g_k^\lambda(r;\omega_{ ext{max}}) := rac{1}{h_k^\lambda} \int_{-1}^1 (1-s^2)^{\lambda-1/2} \Psi_{\ell m}\left(t(s),r;\omega_{ ext{max}}
ight) C_k^\lambda(s) ds.$$
 where $t(s) = \left[\left(b-a\right)s + \left(a+b
ight)\right]/2$.

Approximate

$$\psi_{\ell m}(t,r) pprox \sum_{k=0}^{N} g_k^{\lambda} C_k^{\lambda}(s(t)).$$

Gegenbauer approximant converges uniformly and exponentially on $a \leq t \leq b$, provided N, λ and $\omega_{\max} \to \infty$ in linear proportion.

Internal reconstruction: $r \leq r_p(t)$

Gegenbauer reconstruction effective and outperforms Direct reconstruction.

Convergence

Convergence expected to be uniform and exponential.

Choice of N and λ

Parameters \emph{N} and λ must be chosen appropriately.

External reconstruction: $r \ge r_p(t)$

Gegenbauer reconstruction enables calculations in $r > r_p(t)$.

Concluding remarks

- Coming soon to arXiv: proof of concept calculations for scalar-field modes $\psi_{\ell m}(t,r)$ with scattering source.
- Working towards full scalar-field self-force scatter calculation:
 - ► Computational efficiency: reconstruction, radial integrals in FD.
 - $\rightarrow\,$ TD reconstruction cheaper than FD mode calculation.
 - → Economise FD calculation by reusing integrals/integrands, or use ODE integration.
 - ▶ Optimal choices of $N/\omega_{\rm max}$ and $\lambda/\omega_{\rm max}$.
 - → Calibrate to EHS then update using convergence tests?
 - $\,\rightarrow\,$ Choices unlikely to be optimal, but may be adequate.
- Gravity is the ultimate aim .
- Advanced reprojection methods?
 - ► Alternative bases (e.g. Freud polynomials [Gelb & Tanner 2006]).
 - ► Inverse polynomial reconstruction [Shizgal & Jung 2003]
 - ... and more! e.g. [Adcock & Hansen 2011]
- New applications?
 - ► Easy to implement as post-processing step.