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Talk outline

A) Introduction to self-force
B) Self-force in black hole scattering
C) Frequency-domain appproach

D) Future work
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PART A: Introduction to self-force
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The 2-body problem in GR: approaches
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Extreme mass ratio inspirals (EMRIs)

@ Highly asymmetric compact
binaries. Typical mass ratios

10Ms,

~—2 =10« 1
77 106M, <

(1)
@ Inspiral slow compared to orbital
periods:

TRR ~ Torb/q > Torb- (2)

@ Large number of gravitational
wavecycles in LISA band before
merger:

Nog, ~ 1/q ~ 10°.  (3)
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Self-Force in Scattering

Created using KerrGeodesics package from BHP toolkit

@ Orbital dynamics complicated.
Geodesics tri-periodic and
generically ergodic.

@ EMRIs offer a precision probe of

strong-field geometry around
black-holes.
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Self-force principles
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@ Motion of small body given effective representation in background
spacetime of the larger object.

@ No need for ad hoc regularisation procedures. EOM derived using
matched asymptotic expansions

@ No need to assume a point-particle description; effective
point-particle description is derived.
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1SF equation of motion

@ Metric perturbation split into “direct”
and “tail” contributions:

h ire
ggﬁyb = 8up + hgléect htall (4)

Curvature

@ Only hfjﬁﬂ contributes to the self-force:

D2z o -
_ \V/ By ptail
m dr2 m hﬁv

2(r)

1
Vohy = =3 (87 + u*w?) w'u (2Vshgy — Vhis) . (6)
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R-S decomposition

o May also write

Fo(r) = mVP R = lim mV? (hgi(x) — h3,(x)) (7)

v z(7) x—z(T)
where the regular and singular fields are defined in terms of acausal

Green'’s functions.

@ Unlike hfjgl, the regular field is a vacuum solution of the linearised
Einstein equations. The singular field represents the small object’s
self-field and does not contribute to the SF.

@ Motion with 1st order self-force is equivalent to geodesic motion in
the effective metric

855 = Gap + huys. (8)
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Computational approaches |: mode-sum regularisation

@ Singular field subtracted mode-by-mode in a spherical harmonic
expansion around the large BH:

Fself(T) = mz [(Vhret)f . (VhS)K} (9)

—~ 2()

[m(Vhe)’|

o)~ A(z)l — B(z) — C(z2)/¢| — D(z2).

~
Il
o

@ Regularization parameters: derived analytically for generic Kerr orbits.

@ Numerical input: modes of hgeg calculated numerically by solving
perturbation equations with point-particle source and retarded BCs.
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Computational approaches Il: effective sources

o Puncture field hfﬁ ~ hgﬁ constructed analytically, such that

Fet(T) = mVA~® oy (10)
where h® := h™* — A is the residual field.
o Linearised field equation 0Gy,, [h] = T, is rewritten:
5Gu [M*] = Ty — 6Gu [W7] =: S8 (11)

and solved numerically.
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PART B: Self-force in black hole scattering
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Scatter orbits

Particle starts at radial infinity at early times with velocity v and impact
parameter b:

b= lim_r,(7)sinl@,(7) — @p(—o0)]. (12)

T——00

Provided b > b.it(v), particle scatters off central black hole, approaching
to within periapsis distance fpin.
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Why study scattering?

@ Theoretical grounds:

© Can probe sub-ISCO region even at low velocities; down to light ring
r = 3M with large v.
@ Scattering angle x(b, v) defined unambiguously, even with radiation.

@ Boundary-to-bound relations between scatter and bound orbit
observables, derived using effective-field-theory.

@ PM expansion of y can be used to calibrate effective-one-body
models

@ xisr determines full conservative dynamics to 4PM, valid at any
mass ratio. Extend to 6PM with yogr
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Comparisons with PM

@ Significant recent progress in PM theory, driven by techniques from
outside the usual community (EFT, amplitudes).

@ State of the art results at 4PM.

@ Comparisons between PM and SF approaches allow mutual validation.

@ SF results are “exact” i.e. contain PM terms of all orders at given
order in gq. Benchmark PM results in strong-field regime.
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Self-force corrections to the scatter angle

@ The self-force correction is defined by

dx = x(b, v) — xo(b,v) = O(q), (13)
where xo := limg_.g X is the scatter angle of the geodesic with the
same (b, v).

@ Correction expressed as integral over the worldline,

+o0
Sy = / A (7: b, v)F,(7)dr. (14)

[e.9]

At O(q), integral may be evaluated along limiting geodesic.
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Conservative and dissipative effects

We can split the self-force into conservative and dissipative pieces,

«a 1 re adv

Fcons = 5 [ self(h t) + F, (h d )i| ) (15)
a 1 re adv

Fdiss = E [ self(h t) - sel (h d ):| ) (16)

and consider their effects separately,
+oo
5 Xcoms = / A (7 b, v)FE,(7)d, (17)
0

+oo .
S X diss = / AgISS(T; b, v)F3(T)dT. (18)
0
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Scalar-field toy model in Schwarzschild

@ Toy model: scalar charge @ with mass m moving in a background
Schwarzschild spacetime of mass M:

oo 54 (x — z(1))

VIV, ® = —4n Q/ ———dT, 19
s (19)

D
P = Qure = iy (20)

@ Scalar-field calculation captures the main challenges of gravitational
self-force calculations, in a simpler overall framework.

e Parameter qs := Q?/(mM) < 1 takes the role of the mass ratio.
Integral formulae for § essentially unchanged.

e First numerical calculations by Long & Barack using their (1+1)D
time-domain code for the self-force.
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Early scatter angle results [Barack & Long 2022]
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PM comparisons [Barack et al 2023]
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PM comparisons [Barack et al 2023]
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PART C: Frequency-domain approach

C. Whittall & L. Barack, Frequency-domain approach to self-force in hyperbolic
scattering, Phys. Rev. D 108 064017 (2023) [arXiv:2305.09724].
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Frequency-domain methods

o Fields are additionally decomposed into Fourier harmonics, e.g.

+00 .
Yem(t, r) = Vome(r)e "t (21)

e Many frequency-domain (FD) self-force codes in existence for bound
orbits. Valued for their accuracy and efficiency.

@ FD methods expected to retain these advantages when moving to
unbound orbits, but challenges must be overcome:

» Continuous spectrum.

> Failure of EHS method.

» Slowly convergent radial integrals.

» Cancellation during TD reconstruction.

We use a scalar-field toy model in Schwarzschild to investigate and
manage these problems.
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Scalar-field toy model

o Field equation becomes

2
d ;/}rézmw — [Vie(r) = ] Ymw = Stmu(r). (22)

@ Admits homogeneous solutions @Di(r) obeying retarded BCs at either
horizon or infinity. Retarded inhomogeneous solution constructed
using variation of parameters:

r @be_w(rl)sémw(r,)
Wi f(r")
too wz;;(r/)Sme(r/)

O [

@ Gibbs phenomenon: impractical to reconstruct SF modes from
physical solution ¥y (r).

¢me(r) = %ﬁ,(f) dr' (23)

Mmin
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Extended homogeneous solutions [Barack, Ori & Sago 2008]

@ Method of Extended Homogeneous Solutions restores exponential,
uniform convergence.

EHS
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Extended homogeneous solutions

@ Physical time-domain field is reconstructed piecewise from
homogeneous solutions. For example, SF modes in the “internal”
region r < rp(t) reconstructed from

too W’L(H)Semw(r’)

Wef (1) dr'. (24)

Tl =) |

Mmin

@ In vacuum region r < rpin, this EHS field coincides with the physical,
inhomogeneous field.

@ For unbound orbits, EHS cannot be used to reconstruct field in the
“external” region r > rp(t).

We use EHS and one-sided mode-sum regularisation
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Truncation problem
@ Need to evaluate the normalisation integrals,

G = [ LAl
Imw * . Wewf(f') ’

min

which stretch over the (unbounded) radial extent of the orbit.

@ Slow, oscillatory convergence:

—— IBP4corr6
problems when truncated at 1077 | — iBpacomo
f- t —— IBPOcorré
INITE€ Imax- 102 IBPOCOITO
@ Developed solutions: = 101}
. . =
@ Tail corrections: use large-r = o] [BPacoTS v IBPACOT0
approximation to integrand to 2
. . . — 107154
derive analytical estimates to
the neglected tail. 10747
@ Integration by parts (IBP): 107 .
. 2.6 2.7 2.8 2.9
use IBP to increase decay rate B e IRy S—
of integrand. M
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C, . spectra

Imw

Example C,,., spectra for orbit £ = 1.1, nyi, = 4M. Note QNM features.
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Self-force: regularisation tests

FD code agrees better with regularisation parameters at this radius

.
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Self-force ({pax = 15)

Good agreement with TD code near periapsis. Rapid deterioration in FD

code as r increased.
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Cancellation problem

o Large-¢ modes blow up rapidly 1091 o r,=4.02Minbound |
with increasing radius. 77 = 6M inbound .
1084 e rp=10Minbound ®
e 1p,=15Minbound ! ¢ !
o Low-frequency Fourier modes of ., 1 R
the EHS field grow rapidly: o . L
@_mw(r) ~ T (wr < 1). T
(26) LI S B
2 4 6 8 10 12 14
£
@ Increasing cancellation between
low-w EHS modes to match
physical TD field. @ Higher precision arithmetic
unsuitable for scatter problem.
@ Problem intrinsic to EHS ® We mitigate using dynamic /
method. truncation in the mode sum.
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Self-force (dynamic #y,ax)

Prevents catastrophic blow up, but still lose accuracy gradually.
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PART D: Future work
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Analytical calculation at large r (preliminary)
@ Supplement FD code with analytic expansion of the SF in 1/r.

@ Makes use of a hierarchical expansion,

Yem(u, v) = Zw/v u, v) (27)
¢0,uv + VO( )1/]0 = 5(“7 V)v (28)
wN,uv + Vo(f)l/fN = _5V(r)¢N—1 (N > 0)7 (29)

where Vp(r) approximates asymptotic behaviour of exact potential

V(r), and 6V(r) := V(r) — Vo(r).

@ g (complete) does not contribute to SF; 1 (underway) gives leading
large-r behaviour.
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PM resummation (preliminary)

@ As b — b.(v),

Xo ~ A(v) log (1 — bcl()v)) + const(v), dxisF ~ gsB(v)

A(v) known analytically; B(v) inferred from SF calculations.

@ Consider the function

WM _ 4 [bg (1 b1 —ZSB/A)> . i <bc(1 —gsB/A)>k

o We define the resummed scatter angle ("M := "M  ynPM

» Agrees with x"™M through nPM order.
» Matches the OSF and 1SF divergences near separatrix.
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PM resummation (preliminary)
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Prospects

@ Analytical results for SF at large r: useful for both TD and FD
approaches.

@ Improved TD methods also under development, including spectral
methods with hyperboloidal slicing and compactification.

@ Routes to gravity?
» Direct Lorenz-gauge calculation
— Investigated extending hllLorenz pacakge to unbound orbits with
Warburton and Barack.
» Radiation-gauge reconstruction
» Lorenz-gauge reconstruction

@ Second order?
» Easier than bound? No disparate timescales.
» Would give conservative dynamics to 6PM.
» Some way off.
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